Mechanism Design and Gait Experiment of an Amphibian Robotic Turtle
نویسندگان
چکیده
In this paper we describe the design of a new bio-inspired amphibian robot with high environmental adaptability. The robot, called MiniTurtle-I, can transform terrestrial and aquatic locomotion configurations through a new variable topology mechanism (Leg-Flipper). Based on the modular design philosophy, four rotatory joint modules (Joints I–IV) constitute a Leg-Flipper module. Variable topology structure transformation of Leg-Flipper by actuation redundancy enables the robot to achieve a variety of locomotion. Our motivation is to provide another solution to achieve amphibious movement both easily and efficiently. A prototype of MiniTurtle-I is built to exam the configuration transformations. Terrestrial, aquatic and semiaquatic gait experiments are performed to verify the locomotion functions of the MiniTurtle-I. © Koninklijke Brill NV, Leiden, 2011
منابع مشابه
Design, Evaluation and Prototyping of a New Robotic Mechanism for Ultrasound Imaging
This paper presents a new robotic mechanism for ultrasound imaging. The device is placed on a patient's body by an operator, and an ultrasound expert controls the motions of the device to obtain ultrasound images. The paper focuses on the robotic mechanism that performs ultrasound imaging. The design of the mechanism is based on two approaches to produce center of motion for an ultrasound probe...
متن کاملOptimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملThe Design and Realization of a Gait Rehabilitation Training Robot with Body Supporting Mechanism
With the increasing number of people who have problems with their walking, a new type of gait rehabilitation training robot has been put forward and designed. In order to meet the requirements of the gait rehabilitation training, the whole mechanical structure and control system have been designed, and the model machine for gait rehabilitation training robot has been made. Using the human gait ...
متن کاملConceptual Design of a Gait Rehabilitation Robot
Gait rehabilitation using body weight support on a treadmill is a recommended rehabilitation technique for neurological injuries, such as spinal cord injury. In this paper, a new robotic orthosis is presented for treadmill training. In the presented design the criteria such as low inertia of robot components, backdrivability, high safety and degrees of freedom based on human walking are conside...
متن کاملEvaluation of a Viscoelastic Ankle-Foot Prosthesis at Slow and Normal Walking Speeds on an Able-Bodied Subject
Objectives: This paper describes further improvement and preliminarily evaluation of a novel viscoelastic ankle-foot prosthesis prototype. The objective was to control the ankle hysteresis at slow and normal walking speeds. Methods: Inspired by the ankle biomechanics, in which the hysteresis differs based on the gait speeds, a manually damping control mechanism imbedded in the prosthesis for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced Robotics
دوره 25 شماره
صفحات -
تاریخ انتشار 2011